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Comment on “Power-law correlations in the southern-oscillation-index fluctuations
characterizing El Nino”
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In a recent publicatiohPhys. Rev. B63, 047201(2001)], Ausloos and Ivanova report power-law probability
distributions, fractal properties, and antipersistent long-range correlations in the southern oscillation index. As
a comparison with artificial short-range correlated data shows, most of these findings are possibly due to
misleading interpretation of the analysis techniques used.
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. INTRODUCTION and its correlation decays a8(t)xexp(—t/7), where r
=1/In(A)~2.06 months.

Power laws are found in a wide variety of natural phe-
nomena that feature chaos, self-similarity or criticality-3].
However, there is a somewhat disturbing tendency of physi-
cists to find power laws in possibly quite innocuous data, and  Ausloos and Ivanova first examine the differenogs
disregard less exciting alternatives. One recent example ofy, vy, by plotting the empirical cumulative probability
this is a paper by Ausloos and Ivanoyd] in which the gistribution of|x|. They fit a power law, i.e., a line on a
authors report power-law correlations in the southern osciligg-jog scale, to this data in the range 5| < 2.8 and find
lation index(SOI), a climate index connected to the EMin 3 hower law with an exponent qf=3.30. It should be
phenomenon. _ _ o pointed out that one can fit a line to any sufficiently smooth

| will compare the SOI time series to an artificial datasetfynction, that the fit may even look convincing if the range is
obtained from a simple linear autoregressive process usingmajl enough, and that most monotonic curves are reason-
the same methods and representations used in[Refltis ~ aply smooth on a log-log scale. Thus, in a similar fashion, a

not my aim to show that all statistical properties of the SOljine can be fitted to the test data in the same range, suggest-
data can be explained with this model—they cannot. | wiII,ing an exponent of.=4.7, as seen in Fig. 2.

however, show that the methods used to diagnose power of course, the differences? of the artificial data are

laws in Ref.[4] will (falsely find similar “power laws” in 4 qqjan, and the cumulative probability distribution of their
short-range correlated artificial data as well, and are thus n bsolute values is[2— ®(x/c)]. The slope of this func-

sufficient. The lesson to be learned from this is that statistical | 1 5 log-log plot goes te = asx— %—it does not give
properties of a time series should always be compared tg power-law value ofz=2, as Ausloos and Ivanova claim.

surrogate data to make meaningful statements. Thus, one can find tangents of any slope whatsoever by
choosing the correct range. For example, the range between

IIl. DISTRIBUTION OF FLUCTUATIONS

Il. THE DATA
4 T T

In Ref.[4], the time seriey, of the monthly averaged SOI
from 1866—2000 is studied. | will use the data from R&l,
which only has the data from 1866 to 1999, so oy
=1602 instead of 1612 data points are used. This does nc
change anything about the conclusions.

The artificial dataseg{ for comparison is generated using
a first-order linear autoregressive process,
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where ¢; are independent Gaussian random variables with
mean 0 and variance 1. The paramet#®randB are chosen
such that the variance®=((y2—y?)?) and the variance of
one-step differences3=((y?, ,—y?)?) agree with the cor-
responding values of the SOl data;?=1.23 and crﬁ
=0.944. This fit leads tdA=0.6155 andB=0.8732(four-
digit precision is, of course, unrealistic, but these numbers

are as good as any othgrghe dataset used here is shown in  FIG. 1. The SOI datasétop) and the artificial dataset generated
Fig. 1. By construction, it has a well-defined length scale,using Eq.(1) (bottom.
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FIG. 3. Estimate of the power spectrum for the SOI ddtn
t solid line) and the surrogate datdotted ling, andS(f) according
to Eq.(2) (thick solid ling. The dot-dashed line shows a power law
Soc £~ 13 for comparison.

FIG. 2. The cumulative probability distributiorsProb(y;. ,
—y;/<x) for the SOI data and artificial data are slightly differen
however, power law fits over a small range are equally gaod
bad for both. The thin solid line gives the theoretical prediction for

the surrogate data. ) ) ) )
where 1f ..« is the time interval between consecutive data

1.1 and 2.2 giveg=3.3. Likewise, since the SOI data pro- points. Using the parameters given in Sec. |, this function
duce a curved probability distribution, a continuum of slopesyields a straight line on a log-log plot in the range between
can be achieved by choosing the data window for the fitl/2 month ! and 1/20 month'. One even finds a slope of
appropriately. —1.3 for this line.

The question whether a given set of data is compatible Figure 3 shows the functio®(f) according to Eq(2)
with a suspected underlying probability distribution can betogether with an estimate of the power spectrum of both the
answered tentatively with statistical tests such as theéSOl data and the test data, calculated with the routines from
Kolmogorov-Smirnov(KS) test[6]. In the given case, the Ref.[6].
KS statistics indicates that the hypothesis that the SOI fluc-
tuations are Gaussian can indeed be rejected on a 1% confi-
dence limit. However, thad hochypothesis that the artificial
data are drawn from a cumulative distribution that looks like The last analysis in4] applies the detrended fluctuation
®(x) up to|x|=1.5 and likeCx *’ for |x|>1.5 cannot be analysis(DFA) [8,9], which can be used to determine Hurst
rejected. Neither can any number of otlaer hocfits to the  exponents in data that contain trends of unknown length
empirical distribution—for example, Prdi¢|<x)=exp scales. The authors report a Hurst exponent of 8281 on
(—x1%0.79) gives an excellent fit to the SOI ddtaver the a scale up to 70 months, at which point the fluctuation func-
entire rangg but without further justification, this is just tion saturates. Their conclusion is that the SOI signal shows

V. DETRENDED FLUCTUATION ANALYSIS

another meaningless guess. antipersistent power-law correlations.
Following Ref.[9], the method of DFA consists of four
IV. POWER SPECTRUM stepsi(1) take the profilgsum Y,=3!_,y; of the considered

time seriesy; (2) cut that profile into nonoverlapping seg-
In Ref. [4], the 'authors. then stqu the power SpeCtrumments of I?rllgtks; (3) fit a polynomial to each of these seg-
S(f)ﬁof_the SOl time sEnes and find a power |a(f) ments and subtract the fitted functigdifferent orders of
o W'th_?n exponenB—:I:l?;Z for a frequency range fr.om polynomials can be used to remove trends of corresponding
1/5 month~ to 1/64 month=. They c_iraw the conclusion order—here, order 1 is used exclusively4) calculate the
that the SOI data represent a sel_f-afflne fractgl. variance of the detrended time series within the segments,
The power spectrum of a function is essentially the I’nOdu'average the variance over the segments and take the square

lus square of the Fourier transform of that function, and time oot The resulting fluctuation functioR(s) shows a power

series that show self-similarity display power laws in the'rlaw, F(s)xs!~ "2 if the underlying time series has long-

power spectrum. ions of typ€(s)s™?, and displaysF(s
However, the statements about smooth functions in Iog_range correlation YPE(s)xs 7, playsF(s)

. X ) «s'2 if the time series is only short-range correlated.
log plots from the precedl.ng section still hold true here. For It is interesting to note that the authors of Rie skip the
example, the autoregressive precdings by which the test dafﬁ

were generated is knowi] to have the power spectrum st step of the procedure, thus doing the DFA of the one-
9 P P step differences; rather than the SOI time serigsitself. It

B2 is hardly surprising that the fluctuation function xf satu-
S(f)= , ) rates at some point: the SOI signal itself takes values within
1+A?—2A cog 271 pay a finite range, no matter for how long one observdastone
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FIG. 4. DFA-1 analysis of the one-step differenggs, —y; for

both datasets. FIG. 5. DFA-1 analysis of the time serigs for both datasets.

Both the SOI data and the surrogate data show the two regimes

should expect for an index that measures air pressure dil‘feF—(S)Ocs for short times and(s)<s™ for long times. Including a
P . P Eeriodicity into the surrogate data gives a better agreement to SOI
ence$, and the sum of the one-step differences over an ata

length of time can never be larger than the difference be-
tween the minimal and maximal values of the SOI time segate data, generated by adding a tetrf.22sin(2rt/60) to
ries. Eq. (1).
Comparing the fluctuation function of the differences of
the artificial data to that of the SOI dataee Fig. 4, one VI. CONCLUSION

notices that there are visible differences between the two . e
curves, and the SOI differences give more of a power-law The comparison between the SOI data and artificial data

impression. However, both curves approach their saturatiolith short-range correlations shows that, while the SOI one-
values on similar time scales. It is a slight surprise, but a facpt€P differences display fluctuations whose distribution is not
nevertheless, that the(S) calculated from théshort-range exactly Gaussian, tht_—:‘re. is [lttle reason to believe that they
correlated test data is visibly different from its saturation [0llow @ power-law distribution. Neither is there good evi-
value up tos~100 months. Qence that the SO! signal is self-affine. T.he fll|7|2ptuanon func-
What about possible long-range correlations in the origition calculated using DFA shows a regimes™ for long
nal time series? A DFA of the time series its@tig. 5 shows times, as one would expect for time Series W|thout. long-
two regimes for both the SOI and the artificial data. On shorf@ng€ correlations. The shape of the fluctuation function can
times scales, one finds fluctuations compatible Wts) e partly explained by including a periodicity of roughly 60
«s; random motion F(s)=s?] dominates on longer time months.. . -
scales, with a somewhat blurry crossover between them. An More importantly, even with dat.a that are definitely short-
estimate of the crossover by fitting power laws to the lage- range correlated, reasonably straight sections appear on log-

and smalls regimes and calculating the intersection givesIog plots of _several ;tatistical quantities, W.hi.Ch should not be
similar crossover times of42 months (It should be noted confused with genuine power laws. The willingness to apply

that DFA systematically overestimates crossover tiff8ds th(::f_c_atetglgory _t_pO\lNer Ilaw_ tof Strl:Ch datrnfactds can pre\f/eln:] a
and that the number of data points is not sufficient to giveSu Iciently critical analysis of thé data and meaningtul ny-

reliable results in the large+egime) There are quantitative potheses on the underlying mechanisms.

differences between the two datasets, especially in the range
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