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Comment on ‘‘Power-law correlations in the southern-oscillation-index fluctuations
characterizing El Niño’’

Richard Metzler
Institut für Theoretische Physik und Astrophysik, Universita¨t Würzburg, Am Hubland, D-97074 Wu¨rzburg, Germany

~Received 13 November 2001; published 16 January 2003!

In a recent publication@Phys. Rev. E63, 047201~2001!#, Ausloos and Ivanova report power-law probability
distributions, fractal properties, and antipersistent long-range correlations in the southern oscillation index. As
a comparison with artificial short-range correlated data shows, most of these findings are possibly due to
misleading interpretation of the analysis techniques used.
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I. INTRODUCTION

Power laws are found in a wide variety of natural ph
nomena that feature chaos, self-similarity or criticality@1–3#.
However, there is a somewhat disturbing tendency of ph
cists to find power laws in possibly quite innocuous data, a
disregard less exciting alternatives. One recent exampl
this is a paper by Ausloos and Ivanova@4# in which the
authors report power-law correlations in the southern os
lation index~SOI!, a climate index connected to the El Nin˜o
phenomenon.

I will compare the SOI time series to an artificial datas
obtained from a simple linear autoregressive process u
the same methods and representations used in Ref.@4#. It is
not my aim to show that all statistical properties of the S
data can be explained with this model—they cannot. I w
however, show that the methods used to diagnose po
laws in Ref.@4# will ~falsely! find similar ‘‘power laws’’ in
short-range correlated artificial data as well, and are thus
sufficient. The lesson to be learned from this is that statist
properties of a time series should always be compare
surrogate data to make meaningful statements.

II. THE DATA

In Ref. @4#, the time seriesyt of the monthly averaged SO
from 1866–2000 is studied. I will use the data from Ref.@5#,
which only has the data from 1866 to 1999, so onlyN
51602 instead of 1612 data points are used. This does
change anything about the conclusions.

The artificial datasetyt
a for comparison is generated usin

a first-order linear autoregressive process,

yt11
a 5Ayt

a1Be t , ~1!

where e t are independent Gaussian random variables w
mean 0 and variance 1. The parametersA andB are chosen
such that the variances25^(yt

a2 ȳt
a)2& and the variance o

one-step differencessd
25^(yt11

a 2yt
a)2& agree with the cor-

responding values of the SOI data,s251.23 and sd
2

50.944. This fit leads toA50.6155 andB50.8732~four-
digit precision is, of course, unrealistic, but these numb
are as good as any others!. The dataset used here is shown
Fig. 1. By construction, it has a well-defined length sca
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and its correlation decays asC(t)}exp(2t/t), where t
51/ln(A)'2.06 months.

III. DISTRIBUTION OF FLUCTUATIONS

Ausloos and Ivanova first examine the differencesxt
5yt112yt by plotting the empirical cumulative probabilit
distribution of uxu. They fit a power law, i.e., a line on a
log-log scale, to this data in the range 1.5,uxu,2.8 and find
a power law with an exponent ofm53.30. It should be
pointed out that one can fit a line to any sufficiently smoo
function, that the fit may even look convincing if the range
small enough, and that most monotonic curves are rea
ably smooth on a log-log scale. Thus, in a similar fashion
line can be fitted to the test data in the same range, sugg
ing an exponent ofm54.7, as seen in Fig. 2.

Of course, the differencesxt
a of the artificial data are

Gaussian, and the cumulative probability distribution of th
absolute values is 2@12F(x/sd)#. The slope of this func-
tion on a log-log plot goes to2` asx→`—it does not give
a power-law value ofm52, as Ausloos and Ivanova claim
Thus, one can find tangents of any slope whatsoever
choosing the correct range. For example, the range betw

FIG. 1. The SOI dataset~top! and the artificial dataset generate
using Eq.~1! ~bottom!.
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1.1 and 2.2 givesm53.3. Likewise, since the SOI data pro
duce a curved probability distribution, a continuum of slop
can be achieved by choosing the data window for the
appropriately.

The question whether a given set of data is compat
with a suspected underlying probability distribution can
answered tentatively with statistical tests such as
Kolmogorov-Smirnov~KS! test @6#. In the given case, the
KS statistics indicates that the hypothesis that the SOI fl
tuations are Gaussian can indeed be rejected on a 1% c
dence limit. However, thead hochypothesis that the artificia
data are drawn from a cumulative distribution that looks l
F(x) up to uxu51.5 and likeCx24.7 for uxu.1.5 cannot be
rejected. Neither can any number of otherad hocfits to the
empirical distribution—for example, Prob(uxtu,x)5exp
(2x1.2/0.79) gives an excellent fit to the SOI data~over the
entire range!, but without further justification, this is jus
another meaningless guess.

IV. POWER SPECTRUM

In Ref. @4#, the authors then study the power spectru
S( f ) of the SOI time series and find a power lawS( f )
} f 2b with an exponentb51.32 for a frequency range from
1/5 month21 to 1/64 month21. They draw the conclusion
that the SOI data represent a self-affine fractal.

The power spectrum of a function is essentially the mo
lus square of the Fourier transform of that function, and ti
series that show self-similarity display power laws in th
power spectrum.

However, the statements about smooth functions in l
log plots from the preceding section still hold true here. F
example, the autoregressive precdings by which the test
were generated is known@7# to have the power spectrum

S~ f !5
B2

11A222A cos~2p f / f max!
, ~2!

FIG. 2. The cumulative probability distributionsNProb(uyt11

2ytu,x) for the SOI data and artificial data are slightly differen
however, power law fits over a small range are equally good~or
bad! for both. The thin solid line gives the theoretical prediction f
the surrogate data.
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where 1/f max is the time interval between consecutive da
points. Using the parameters given in Sec. I, this funct
yields a straight line on a log-log plot in the range betwe
1/2 month21 and 1/20 month21. One even finds a slope of
21.3 for this line.

Figure 3 shows the functionS( f ) according to Eq.~2!
together with an estimate of the power spectrum of both
SOI data and the test data, calculated with the routines f
Ref. @6#.

V. DETRENDED FLUCTUATION ANALYSIS

The last analysis in@4# applies the detrended fluctuatio
analysis~DFA! @8,9#, which can be used to determine Hur
exponents in data that contain trends of unknown len
scales. The authors report a Hurst exponent of 0.2560.01 on
a scale up to 70 months, at which point the fluctuation fu
tion saturates. Their conclusion is that the SOI signal sho
antipersistent power-law correlations.

Following Ref. @9#, the method of DFA consists of fou
steps:~1! take the profile~sum! Yt5( i 51

t yi of the considered
time seriesy; ~2! cut that profile into nonoverlapping seg
ments of lengths; ~3! fit a polynomial to each of these seg
ments and subtract the fitted function~different orders of
polynomials can be used to remove trends of correspond
order—here, order 1 is used exclusively!; ~4! calculate the
variance of the detrended time series within the segme
average the variance over the segments and take the sq
root. The resulting fluctuation functionF(s) shows a power
law, F(s)}s12g/2, if the underlying time series has long
range correlations of typeC(s)}s2g, and displaysF(s)
}s1/2 if the time series is only short-range correlated.

It is interesting to note that the authors of Ref.@4# skip the
first step of the procedure, thus doing the DFA of the on
step differencesxt rather than the SOI time seriesyt itself. It
is hardly surprising that the fluctuation function ofxt satu-
rates at some point: the SOI signal itself takes values wit
a finite range, no matter for how long one observes it~as one

FIG. 3. Estimate of the power spectrum for the SOI data~thin
solid line! and the surrogate data~dotted line!, andS( f ) according
to Eq.~2! ~thick solid line!. The dot-dashed line shows a power la
S} f 21.3 for comparison.
1-2



ffe
n

be
se

o

tw
la
tio
fa

n

ig

o

. A
e-
es

iv

n
by
0
pe

rro

ata
ne-
not
hey
i-
nc-

g-
can
0

rt-
log-
be
ply
a

y-

eli
ns
sis

mes

SOI

COMMENTS PHYSICAL REVIEW E 67, 018201 ~2003!
should expect for an index that measures air pressure di
ences!, and the sum of the one-step differences over a
length of time can never be larger than the difference
tween the minimal and maximal values of the SOI time
ries.

Comparing the fluctuation function of the differences
the artificial data to that of the SOI data~see Fig. 4!, one
notices that there are visible differences between the
curves, and the SOI differences give more of a power-
impression. However, both curves approach their satura
values on similar time scales. It is a slight surprise, but a
nevertheless, that theF(S) calculated from the~short-range
correlated! test data is visibly different from its saturatio
value up tos'100 months.

What about possible long-range correlations in the or
nal time series? A DFA of the time series itself~Fig. 5! shows
two regimes for both the SOI and the artificial data. On sh
times scales, one finds fluctuations compatible withF(s)
}s; random motion@F(s)}s1/2# dominates on longer time
scales, with a somewhat blurry crossover between them
estimate of the crossover by fitting power laws to the largs
and small-s regimes and calculating the intersection giv
similar crossover times of'42 months.~It should be noted
that DFA systematically overestimates crossover times@9#,
and that the number of data points is not sufficient to g
reliable results in the large-s regime.! There are quantitative
differences between the two datasets, especially in the ra
between 20 and 200 months. These could be explained
periodicity in the SOI signal with a period of roughly 6
months, a suspicion supported by a hump in the power s
trum at a frequency of roughly 0.02 months21. To illustrate
this, Fig. 5 shows the DFA of a second, longer, set of su

FIG. 4. DFA-1 analysis of the one-step differencesyt112yt for
both datasets.
s

01820
r-
y
-
-

f

o
w
n

ct

i-

rt

n

e

ge
a

c-

-

gate data, generated by adding a term10.22sin(2pt/60) to
Eq. ~1!.

VI. CONCLUSION

The comparison between the SOI data and artificial d
with short-range correlations shows that, while the SOI o
step differences display fluctuations whose distribution is
exactly Gaussian, there is little reason to believe that t
follow a power-law distribution. Neither is there good ev
dence that the SOI signal is self-affine. The fluctuation fu
tion calculated using DFA shows a regime}s1/2 for long
times, as one would expect for time series without lon
range correlations. The shape of the fluctuation function
be partly explained by including a periodicity of roughly 6
months.

More importantly, even with data that are definitely sho
range correlated, reasonably straight sections appear on
log plots of several statistical quantities, which should not
confused with genuine power laws. The willingness to ap
the category ‘‘power law’’ to such artifacts can prevent
sufficiently critical analysis of the data and meaningful h
potheses on the underlying mechanisms.
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FIG. 5. DFA-1 analysis of the time seriesyt for both datasets.
Both the SOI data and the surrogate data show the two regi
F(s)}s for short times andF(s)}s1/2 for long times. Including a
periodicity into the surrogate data gives a better agreement to
data.
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